学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间
(单位:分钟)之间的关系满足如图所示的图象,当
时,图象是二次函数图象的一部分,其中顶点
,过点
;当
时,图象是线段
,其中
.根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
(1)求数列的通项公式
(2)求数列的前n项和
(本小题满分14分)
已知数列,
满足
,其中
.
(Ⅰ)若,求数列
的通项公式;
(Ⅱ)若,且
.
(ⅰ)记,求证:数列
为等差数列;
(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次. 求首项
应满足的条件.
(本小题满分14分)
已知函数.
(Ⅰ)若曲线在
和
处的切线互相平行,求
的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意
,均存在
,使得
,求
的取值范围.
(本小题满分13分)
已知椭圆(
)的右焦点为
,离心率为
.
(Ⅰ)若,求椭圆的方程;
(Ⅱ)设直线与椭圆相交于
,
两点,
分别为线段
的中点. 若坐标原点
在以
为直径的圆上,且
,求
的取值范围.
(本小题满分13分)
一个袋中装有个形状大小完全相同的小球,球的编号分别为
.
(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;
(Ⅱ)若从袋中每次随机抽取个球,有放回的抽取3次,求恰有
次抽到
号球的概率;
(Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为
,求随机变量
的分布列.