(本小题满分12分)如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.(1)求证:;(2)若平面,侧棱上是否存在一点,使得平面,若存在,确定点的位置;若不存在,试说明理由.
等差数列中,已知, (1)求数列的通项公式; (2)若分别为等比数列的第1项和第2项,试求数列的通项公式 及前项和.
直线与圆交于、两点,记△的面积为(其中为坐标原点). (1)当,时,求的最大值; (2)当,时,求实数的值;
若,求函数的最大值和最小值;
如图5,在四棱锥中,底面为正方形,平面,,点是的中点. (1)求证://平面; (2)若四面体的体积为,求的长.
设函数. (Ⅰ)求函数的最小正周期; (Ⅱ)当时,求函数的最大值及取得最大值时的的值;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号