(本小题满分12分)如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的
倍,
为侧棱
上的点.
(1)求证:;
(2)若平面
,侧棱
上是否存在一点
,使得
平面
,若存在,确定点
的位置;若不存在,试说明理由.
(1)从4名医生7名护士中选出2名医生4名护士分成两队,每队1名医生2名护士,到A、B两地巡回医疗,则不同的选取方法有多少种?
(2)一组同学共7人,从男生中选2人,女生中选2人,参加三种不同的活动,要求每人参加一种活动,且每种活动都有人参加,经计算,不同的选法共有648种,则该组中男、女生各有多少名?
小李有10个朋友,其中两人是夫妻,他准备邀请其中4人到家中吃饭.这对夫妻或者都邀请,或者都不邀请,有几种请客方法?
面上有9个红点,5个黄点,其中有2个红点和2个黄点在一条直线上,其余再无任何三点共线,问以这些点为三角形的顶点,其中三个顶点的颜色不完全相同的三角形有多少个?
一份考卷有10道考题,分为A、B两组,每组5题,要求考生选答6题,但每组最多选4题,问考生有几种选答方式?
从5双不同的鞋子中任取4只,
(1)取出的4只鞋子中至少能配成1双,有多少种不同的取法?
(2)取出的4只鞋子,任何两只都不能配成1双,有多少种不同的取法?