(本小题满分12分)为了响应国家号召,某地决定分批建设保障性住房供给社会.首批计划用100万元购得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元.已知建筑第5层楼房时,每平方米建筑费用为800元.
(1)若建筑第x层楼时,该楼房综合费用为y万元(综合费用是建筑费用与购地费用之和),写出y=f(x)的表达式;
(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?
某中学的高二(1)班男同学有名,女同学有
名,老师按照分层抽样的方法组建了一个
人的课外兴趣小组.
(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实 验,求选出的两名同学中恰有一名女同学的概率;
已知函数图象上点
处的切线方程为
.
(Ⅰ)求函数的解析式;
(Ⅱ)函数,若方程
在
上恰有两解,求实数
的取值范围
已知点是离心率为
的椭圆C:
上的一点。斜率为
直线BD交椭圆C于B、D两点,且A、B、D三点不重合。
(Ⅰ)求椭圆C的方程;
(Ⅱ)面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
已知向量,函数
.
(Ⅰ)求函数的最小正周期
;
(Ⅱ)已知、
、
分别为
内角
、
、
的对边, 其中
为锐角,
,且
,求
和
的面积
如图,已知四棱锥中,底面
是直角梯形,
,
,
,
,
平面
,
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)若是
的中点,求三棱锥
的体积.