(本小题满分14分)设函数(e=2.718 28……是自然对数的底数).
(1)判断的单调性;
(2)当在(0,+∞)上恒成立时,求a的取值范围;
(3)证明:当(0,+∞)时,
.
(本小题满分14分)
已知函数,
,且
.
(1)试求所满足的关系式;
(2)若,方程
有唯一解,求
的取值范围.
已知定义 域为
的函数同时满足以下三个条件:
①对任意
,总有
;
②
;
③若 ,则有
成立.
(I)求
的值;
(II)判断函数
在区间
上是否同时适合①②③,并给出证明.
(本小题满分12分)
已知函数.
(Ⅰ)当时,求
的极小值;
(Ⅱ)若直线对任意的
都不是曲线
的切线,求
的取值范围.
(本小题满分12分)
已知铁矿石和
的含铁率为
,冶炼每万吨铁矿石的
的排放量
及每万吨铁矿石的价格
如下表:
![]() |
![]() |
![]() |
|
![]() |
50% |
1 |
3 |
![]() |
70![]() |
0.5 |
6 |
某冶炼厂计划至少生产1.9万吨铁,若要求的排放量不超过
万吨,求所需费用的最小值,并求此时铁矿石
或
分别购买多少万吨.
(本小题满分12分)
已知正方形的中心在原点,四个顶点都在函数
图象上,且正方形的一个顶点为
.
(Ⅰ)试写出正方形另外三个顶点的坐标,并求,
的值;
(II)求函数的单调增区间.