(本小题满分12分)已知中, 角
对边分别为
,已知
.
(1)若的面积等于
,求
(2)若,求
的面积.[来源
已知集合 ,对于 ,定义 与 的差为 ; 与 之间的距离为 ,
(Ⅰ)当 时,设 , ,求 , ;
(Ⅱ)证明: ,有 ,且 ;
(Ⅲ)证明: , 三个数中至少有一个是偶数.
已知椭圆 的左、右焦点坐标分别是 ,离心率是 ,直线 与椭圆 交与不同的两点 ,以线段为直径作圆 ,圆心为 .
(Ⅰ)求椭圆
的方程;
(Ⅱ)若圆
与
轴相切,求圆心
的坐标;
(Ⅲ)设
是圆
上的动点,当
变化时,求
的最大值.
设定函数
,且方程
的两个根分别为1,4。
(Ⅰ)当
且曲线
过原点时,求
的解析式;
(Ⅱ)若
在
无极值点,求
的取值范围。
如图,正方形 和四边形 所在的平面互相垂直. .
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
已知 为等差数列,且 .
(Ⅰ)求
的通项公式;
(Ⅱ)若等差数列
满足
,求
的前
项和公式.