在△ABC中,内角A,B,C的对边分别为
,若
.
(1)求角B;
(2)若
的面积为
,求函数
的单调增区间
(本小题共12分)给定函数
和
(I)求证:
总有两个极值点;
(II)
若
和
有相同的极值点,求
的值.
(本小题共10分)已知函数
.
(Ⅰ)求函数
的单调递增区间;
(Ⅱ)求函数
在
上的最大值和最小值.
已知函数
,点
.
(Ⅰ)若
,函数
在
上既能取到极大值,又能取到极小值,求
的取值范围;
(Ⅱ) 当
时,
对任意的
恒成立,求
的取值范围;
(Ⅲ)若
,函数
在
和
处取得极值,且
,
是坐标原点,证明:直线
与直线
不可能垂直.
(本小题满分13分)
给定椭圆
,称圆心在坐标原点
,半径为
的圆是椭圆
的“伴随圆”. 若椭圆C的一个焦点为
,其短轴上的一个端点到
距离为
.
(Ⅰ)求椭圆
及其“伴随圆”的方程;
(Ⅱ)若过点
的直线
与椭圆C只有一个公共点,且
截椭圆C的“伴随圆”所得的弦长为
,求
的值;
(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线
,使得
与椭圆C都只有一个公共点,试判断直线
的斜率之积是否为定值,并说明理由.
已知二次函数
的图像过点
,且
,
.
(Ⅰ)求
的解析式;
(Ⅱ)若数列
满足

,且
,求数列
的通项公式;
(Ⅲ)记
,
为数列
的前
项和.求证:
.