(本小题满分10分)已知函数,且当
时,
的最小值为2,
(1)求的单调递增区间;
(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的
,再把所得的图象向右平移
个单位,得到函数
的图象,求方程
在区间
上所有根之和.
已知向量a=(1,2),b=(-2,m),x=a+(t2+1)b,y=-ka+b,m∈R,k、t为正实数.
(1)若a∥b,求m的值;
(2)若a⊥b,求m的值;
(3)当m=1时,若x⊥y,求k的最小值.
已知平面向量a=(1,x),b=(2x+3,-x),x∈R.
(1)若a⊥b,求x的值;
(2)若a∥b,求|a-b|的值.
如图,△ABC中,D为BC的中点,G为AD的中点,过点G任作一直线MN分别交AB、AC于M、N两点.若=x
,
=y
,求
的值.
如图,△ABC中,在AC上取一点N,使得AN=AC,在AB上取一点M,使得AM=
AB,在BN的延长线上取点P,使得NP=
BN,在CM的延长线上取点Q,使得
=λ
时,
=
,试确定λ的值.
已知点A(2,3),B(5,4),C(7,10),若=
+λ·
(λ∈R),试问:
(1) λ为何值时,点P在第一、三象限角平分线上;
(2) λ为何值时,点P在第三象限.