(.天津市,第21题,10分)(本小题10分)
已知A, B,C是⊙O上的三个点,四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.
(Ⅰ)如图①,求∠ADC的大小;
(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.
如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,DC=12,AD=13,求四边形ABCD的面积.
如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k (k≠0)的图象过点P交x轴于点Q.
(1)求该二次函数的解析式;
(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;
(3)点M、N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M、N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.
①连接AN,当△AMN的面积最大时,求t的值;
②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.
若是关于
的一元二次方程
的两个根,则方程的两个根
和系数
有如下关系:
. 我们把它们称为根与系数关系定理.
如果设二次函数的图象与x轴的两个交点为
.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
请你参考以上定理和结论,解答下列问题:
设二次函数的图象与x轴的两个交点为
,抛物线的顶点为
,显然
为等腰三角形.
(1)当为等腰直角三角形时,求
(2)当为等边三角形时,求
的值.
(3)设抛物线与
轴的两个交点为
、
,顶点为
,且
,试问如何平移此抛物线,才能使
?
如图,在△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,E、F分别为BC、AB上的点,AE⊥CF于点G,交CD于点H.
(1)求证:AH=CF;
(2)若CE=BF,求证:BE=2DH.
“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.
(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?
(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加小时,求m的值.