游客
题文

已知: ΔABC 是等腰三角形, CA = CB 0 ° < ACB 90 ° .点 M 在边 AC 上,点 N 在边 BC 上(点 M 、点 N 不与所在线段端点重合), BN = AM ,连接 AN BM ,射线 AG / / BC ,延长 BM 交射线 AG 于点 D ,点 E 在直线 AN 上,且 AE = DE

(1)如图,当 ACB = 90 °

①求证: ΔBCM ΔACN

②求 BDE 的度数;

(2)当 ACB = α ,其它条件不变时, BDE 的度数是  ;(用含 α 的代数式表示)

(3)若 ΔABC 是等边三角形, AB = 3 3 ,点 N BC 边上的三等分点,直线 ED 与直线 BC 交于点 F ,请直接写出线段 CF 的长.

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形 全等三角形的判定与性质 三角形综合题
登录免费查看答案和解析
相关试题

在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.
【感知】如图1,当点H与点C重合时,可得FG=FD.

【探究】如图2,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.

【应用】在图2中,当AB=5,BE=3时,利用探究结论,求FG的长.

数学课上,李老师出示范了如下框中的题目.

小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AEDB(填“>”、“<”或“=”);

(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AEDB(填“>”、“<”或“=”).理由如下:
如图2过点E作EF∥BC,交AC于点F;(请你完成以下解答过程)

(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).

已知A、B两地的路程为240.某经销商每天都要用汽车或火车将保鲜品一次性由A地运往B地.受各种因素限制,下周只能采取用汽车和火车中的一种进行运输且需提前预定.现有货运收费项目及收费标准表、行驶路/与行驶时间/s的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:

运输工具
运输费单价元/(·
冷藏费单价元/(·h)
固定费用元/次
汽车
2
5
200
火车
1.6
5
2280

(1)汽车的速度为/h,火车的速度为/h;
(2)设每天用汽车和火车运输的总费用分别为/元和/元,分别求的函数关系式(不必写出的取值范围),及为何值时
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输费用较省?

如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在轴的正半轴上,点A在反比例函数>0)的图象上,点D的坐标为(4,3).

(1)求的值;
(2)若菱形ABCD向右平移,使点D落在反比例函数>0)的图象上,求菱形ABCD平移的距离.

丁丁要制作一个形如图1所示的风筝,想在一个矩形材料中裁剪出如图2阴影所示的梯形翅膀,请你根据图2中的数据帮丁丁计算出BE、CD的长度(精确到个位,≈1.7)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号