(.河北省,第26题,14分) (本小题满分14分)
平面上,矩形ABCD与直径为QP的半圆K如图摆放,分别延长DA和QP交于点O,且∠BOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°).
发现(1)当α=0°,即初始位置时,点P____直线AB上.(填“在”或“不在”)
求当α是多少时,OQ经过点B?
(2)在OQ旋转过程中.简要说明α是多少时,点P,A间的距离最小?并指出这个最小值:
(3)如图,当点P恰好落在BC边上时.求α及S阴影.
拓展如图.当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.
探究当半圆K与矩形ABCD的边相切时,求sin α的值.
安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.
(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?
(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;
(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.
如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度 (单位: 与下行时间 (单位: 之间具有函数关系 ,乙离一楼地面的高度 (单位: 与下行时间 (单位: 的函数关系如图2所示.
(1)求 关于 的函数解析式;
(2)请通过计算说明甲、乙两人谁先到达一楼地面.
图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆 长 ,车杆与脚踏板所成的角 ,前后轮子的半径均为 ,求把手 离地面的高度(结果保留小数点后一位;参考数据: , , .
先化简,再求值: ,其中 .
计算: .