(本小题满分12分)设椭圆C 的离心率为,其焦距. (1)求椭圆C的方程; (2)若P在椭圆上,F1,F2分别为椭圆的左右焦点,且满足,求实数t的范围; (3)过点Q(1,0)作直线l (不与x轴垂直)与该椭圆交于M,N两点,与y轴交于点R,若,试判断是否为定值,并说明理由.
已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4. (1)求椭圆的方程; (2)设直线与椭圆相交于不同的两点A,B。已知点A的坐标为。若,求直线的倾斜角。
已知曲线,求曲线过点的切线方程。
解关于x的不等式其中.
在△ABC中,角A、B、C的对边分别为a、b、c,. (1)求cosC;(2)若
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C的标准方程; (Ⅱ)若直线l:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号