(本小题满分12分)
某工厂为了对新研发的一种产品进行合理定价,将对该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) |
8 |
8.2 |
8.4 |
8.6 |
8.8 |
9 |
销售y(件) |
90 |
84 |
83 |
80 |
75 |
68 |
(1)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程
;
其中()
(2)预计在今后的销售中,销售与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
在直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos(θ-)=1,M,N分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求M,N的极坐标.
(2)设MN的中点为P,求直线OP的极坐标方程.
在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ-)=
.
(1)求圆O和直线l的直角坐标方程.
(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.
已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-
)=2.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程.
(2)求经过两圆交点的直线的极坐标方程.
从原点O引直线交直线2x+4y-1=0于点M,P为OM上一点,已知OP·OM=1,求P点所在曲线的极坐标方程.
在极坐标系(ρ,θ)(0≤θ<2π)中,求曲线ρ=2sinθ与ρcosθ=1的交点Q的极坐标.