游客
题文

(本小题满分12分)设二次函数的图象过点(0,1)和(1,4),且对于任意的实数,不等式恒成立.
(Ⅰ)求函数的表达式;
(Ⅱ)设,若在区间[1,2]上是增函数,求实数的取值范围.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知数列
⑴求证:为等差数列;
⑵求的前n项和
⑶若,求数列中的最大值.

对于三次函数
定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;
定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称。
己知,请回答下列问题:
(1)求函数的“拐点”的坐标
(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数,使得它的“拐点”是(不要过程)

某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由果园承担.
若果园恰能在约定日期(日)将水果送到,则销售商一次性支付给果园20万元; 若在约定日期前送到,每提前一天销售商将多支付给果园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给果园1万元.
为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果,已知下表内的信息:

统计信息
汽车行驶路线
不堵车的情况下到达城市乙所需 时间(天)
堵车的情况下到达城市乙所需时间(天)
堵车的概率
运费(万元)
公路1
2
3


公路2
1
4



(注:毛利润销售商支付给果园的费用运费)
(1)记汽车走公路1时果园获得的毛利润为(单位:万元),求的分布列和数学期望;
(2)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多?

如图,已知一四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC⊥底面ABCD,且PC=2,E是侧棱PC上的动点
(1)求四棱锥P-ABCD的体积;
(2)证明:BD⊥AE。
(3)求二面角P-BD-C的正切值。

中,已知内角,边.设内角,面积为.
(1)若,求边的长;
(2)求的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号