(本小题满分12分)设二次函数的图象过点(0,1)和(1,4),且对于任意的实数
,不等式
恒成立.
(Ⅰ)求函数的表达式;
(Ⅱ)设,若
在区间[1,2]上是增函数,求实数
的取值范围.
如图,点为斜三棱柱
的侧棱
上一点,
交
于点
,
交
于点
.
(1) 求证:;
(2) 在任意中有余弦定理:
. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.
( 14分)已知函数,
,其中
为无理数
.(1)若
,求证:
;(2)若
在其定义域内是单调函数,求
的取值范围;(3)对于区间(1,2)中的任意常数
,是否存在
使
成立?
若存在,求出符合条件的一个;否则,说明理由.
已知(I)若a=3,求
的单调区间和极值;(II)已知
是
的两个不同的极值点,且
,若
恒成立,求实数
的取值范围.
设函数为奇函数,且
,数列
与
满足如下关系:
(1)求
的解析式;(2)求数列
的通项公式
;(3)记
为数列
的前
项和,求证:对任意的
有
在△ABC中,.(I)求∠C的大小;(Ⅱ)设角A,B,C的对边依次为
,若
,且△ABC是锐角三角形,求
的取值范围.