(本小题满分12分)《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:
全月应纳税所得额 |
税率(%) |
不超过500元的部分 |
5 |
超过500元至2000元的部分 |
10 |
超过2000元至5000元的部分 |
15 |
(1)设当月应激纳此项税款为元,当月工资、薪金所得为
元,把
表示成
的函数;
(2)某人一月份应激纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?
某种产品的广告费支出(单位:百万元)与销售额
(单位:百万元)之间有如下对应数据
![]() |
2 |
4 |
5 |
6 |
8 |
![]() |
30 |
40 |
60 |
50 |
70 |
(1)画出散点图;
(2)求线性回归方程;
(公式:)
(3)预测当广告费支出为7百万元时的销售额。
(本小题满分13分)某商场举行抽奖活动,从装有编号0,1,2,3四个球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖。
(1)求中二等奖的概率;
(2)求未中奖的概率。
求与椭圆有共同焦点,且过点
的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.
为了了解中学生的体能情况,抽取了某校一个年级的部分学生进行一次跳绳次数测试,将所得的数据 整理后,画出频率分布直方图,如下图所示,已知图中从左到右前三个小组的频率分别为,
第一小组的频数为5
(1)求第四小组的频率;
(2)参加这次测试的学生数是多少?
(3)若次数在60次以上(含60次)为达标,试求该年级学生跳绳测试的达标率是多少?
(4)利用直方图估计该年级学生此次跳绳次数的平均值。
(本小题满10分)注意:第(3)小题平行班学生不必做,特保班学生必须做。对于函数,若存在x0∈R,使
成立,则称x0为
的不动点。已知函数
(a≠0)。
(1)当时,求函数
的不动点;
(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;
(3)(特保班做) 在(2)的条件下,若图象上A、B两点的横坐标是函数
的不动点,且A、B两点关于点
对称,求
的的最小值。