已知椭圆C:+
=1(a>b>0)的离心率是
,且点P(1,
)在椭圆上.
(1)求椭圆的方程;
(2)若过点D(0,2)的直线l与椭圆C交于不同的两点E,F,试求△OEF面积的取值范围(O为坐标原点).
已知四边形ABCD是矩形,AB=,BC=
,将△ABC沿着对角线AC折起来得到△AB1C,且顶点B1在平面AB=CD上射影O恰落在边AD上,如图所示.
(1)求证:AB1⊥平面B1CD;
(2)求三棱锥B1﹣ABC的体积VB1﹣ABC.
已知函数f(x)=sin
cos
﹣cos2
+
(1)若x∈[0,],且f(x)=
,求cosx的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c+a,求f(B)的取值范围.
某中学共有学生2000人,各年级男,女生人数如下表:
一年级 |
二年级 |
三年级 |
|
女生 |
373 |
x |
y |
男生 |
377 |
370 |
z |
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
(2)已知y≥245,z≥245,求高三年级中女生比男生多的概率.
已知数列{bn}是首项为1,公差为2的等差数列,数列{an}的前n项和Sn=nbn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设,求数列{cn}的前n项和Tn.