已知点A在数轴上对应的数为a,点B对应的数为b,且,A、B之间的距离记作|AB|,
(1)求线段AB的长|AB|;
(2)设点P在数轴上对应的数为x,当|PA|-|PB|=2时,求x的值;
(3)若点P在点A的左侧,M、N分别是PA、PB的中点,当点P在A的左侧移动时,下列两个结论:①|PM|+|PN|的值不变;②|PN|-|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.
解方程
(1)4x2-3x+2=0
(2)
如图,有一边长为5的正方形ABCD和等腰△PQR,PQ=PR=5cm,QR=8cm,点B,C,Q,R在同一条直线m上,当C,Q两点重合时,等腰△PQR以每秒1cm的速度沿直线m按箭头所示的方向开始匀速运动,t秒后正方形ABCD和等腰△PQR重合部分的面积为Scm2
(1) 当t =3秒时,设PQ与CD相交于点F,点E为QR的中点,连结PE求证:ΔQCF∽ΔQEP
(2)当t =6秒时,求S的值
(3)当8≤t≤13,求S关于t的函数解析式
已知反比例函数和一次函数y=-x+a-1(a为常数)
(1)当a=5时,求反比例函数与一次函数的交点坐标
(2)是否存在实数a,使反比例函数与一次函数有且只有一个交点,如果存在,求出实数a,如果不存在,说明理由
小明想利用太阳光测量楼高。他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB(结果精确到0.1m).
如图,已知△ABC中CE⊥AB于E,BF⊥AC于F,
(1)求证:ΔABF ∽ΔACE
(2)求证:ΔAEF ∽ΔACB
(3)若∠A=60, 求: