(本小题满分14分)已知{an}是等差数列,其前n项的和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=21,S4+b4=30.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=anbn,n∈N*,求数列{cn}的前n项和.
如图,在直三棱柱中,
,
,
,
,
为侧棱
上一点,且
。
求证:
平面
;
求二面角
的大小。
选修:不等式选讲
已知函数
(1)求不等式
的解集;
(2)若关于的不等式
的解集非空,求实数
的取值范围
选修:坐标系与参数方程
在平面直角坐标系中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,得曲线
的极坐标方程为
(
).
(1)化曲线、
的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线与
轴的一个交点的坐标为
经过点
作曲线
的切线
,求切线
的方程.
选修:几何证明选讲
如图,是圆
的直径,
是弦,
的平分线
交圆
于
,
,交
延长线于点
,
交
于
,
(1)求证:是圆
的切线;
(2)若,求
的值。
已知,函数
,(其中
为自然对数的底数).
(1)判断函数在
上的单调性;
(2)是否存在实数,使曲线
在点
处的切线与
轴垂直? 若存在,求出
的值;
若不存在,请说明理由.