游客
题文

(资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.
(1)求篮球和足球的单价;
(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?
(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

在△ABC中,AC=BC=2,∠C=90°.将一块三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交边AC、CB于点D、E.

(1)如图①,当PD⊥AC时,则DC+CE的值是
(2)如图②,当PD与AC不垂直时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;
(3)如图③,在∠DPE内作∠MPN=45°,使得PM、PN分别交DC、CE于点M、N,连接MN.那么△CMN的周长是否为定值?若是,求出定值;若不是,请说明理由.

如图,A、P、B、C是⊙O上的四点,∠APC=∠CPB=60°,过点C作CM∥BP交PA的延长线于点M.

(1)求证:△ACM≌△BCP;
(2)若PA=1,PB=2,求△PCM的面积.

已知:⊙O的半径长为5,点A、B、C在⊙O上,AB=BC=6,点E在射线BC上.

(1)如图1,联结AE、CE,求证:AE=CE;
(2)如图2,以点C为圆心,CO为半径画弧交半径OB于D,求BD的长.
(3)当OE=时,求线段AE的长.

在平面直角坐标系xOy(如图)中,已知A(﹣1,3),B(2,n)两点在二次函数y=﹣x2+bx+4的图象上.

(1)求b与n的值;
(2)联结OA、OB、AB,求△AOB的面积;
(3)若点P(不与点A重合)在题目中给出的二次函数的图象上,且∠POB=45°,求点P的坐标.

四边形ABCD是平行四边形,E是对角线AC上一点,射线DE分别交射线CB、AB于点F、G.

(1)如图,如果点F在CB边上,点G在AB边的延长线上,求证:
(2)如果点F在CB边的延长线上,点G在AB边上,试写出之间的一种等量关系,并给出证明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号