游客
题文

(成都)(本小题满分10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90.
(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
i)求证:△CAE∽△CBF;
ii)若BE=1,AE=2,求CE的长;
(2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值;
(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E. ⊙O的切线BF与弦AD的延长线相交于点F,且AD=3,cos∠BCD=.

(1)求证:CDBF
(2)求⊙O的半径;
(3)求弦CD的长.

为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分
段(A:50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)统计如下:

根据上面提供的信息,回答下列问题:
(1)在统计表中,a的值为b的值为,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);
(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母)
(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?

商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:
(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?

如图,已知EFABCD对角线AC上的两点,且BEACDFAC.

(1)求证:△ABE≌△CDF
(2)请写出图中除△ABE≌△CDF外其余两对全等三角形(不再添加辅助线).

(1)计算:
(2)解分式方程:.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号