(资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.
(1)求篮球和足球的单价;
(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?
(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.
、
两组卡片共5张,
中三张分别写有数字2,4,6,
中两张分别写有3,5,它们除数字外没有任何区别.
(1)随机地从中抽取一张,求抽到数字为2的概率;
(2)随机地分别从、
中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
如图,、
均为等腰直角三角形,
,点
在
上.求证:
.
如图,抛物线
的顶点为,与
轴的正半轴交于点
.
(1)将抛物线上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;
(2)将抛物线上的点
变为
,
,变换后得到的抛物线记作
,抛物线
的顶点为
,点
在抛物线
上,满足
,且
.
①当时,求
的值;
②当时,请直接写出
的值,不必说明理由.
若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,中,设
,
,
,各边上的高分别记为
,
,
,各边上的内接正方形的边长分别记为
,
,
(1)模拟探究:如图,正方形为
的
边上的内接正方形,求证:
;
(2)特殊应用:若,
,求
的值;
(3)拓展延伸:若为锐角三角形,
,请判断
与
的大小,并说明理由.
如图,反比例函数
的图象与直线交于点
,
,其两边分别与两坐标轴的正半轴交于点
,
,四边形
的面积为6.
(1)求的值;
(2)点在反比例函数
的图象上,若点
的横坐标为3,
,其两边分别与
轴的正半轴,直线
交于点
,
,问是否存在点
,使得
?若存在,求出点
的坐标;若不存在,请说明理由.