(本小题满分12分)已知椭圆
经过点
,离心率
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)不过原点的直线
与椭圆
交于
两点,若
的中点
在抛物线
上,求直线
的斜率
的取值范围.
已知命题
不等式
的解集为R;命题
:
在区间
上是增函数.若命题“
”为假命题,求实数
的取值范围.
已知{
}是公差不为零的等差数列,
=1,且
,
,
成等比数列.
(Ⅰ)求数列{
}的通项;(Ⅱ)求数列{
}的前
项和
.
如图,已知椭圆
过点.
,离心率为
,左、右焦点分别为
、
.点
为直线
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
、
和
、
,
为坐标原点.
(I)求椭圆的标准方程;
(II)设直线
、
的斜线分别为
、
.证明:

已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=
AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
已知{
}是公差不为零的等差数列,
=1,且
,
,
成等比数列.
(Ⅰ)求数列{
}的通项;(Ⅱ)求数列{
.
}的前
项和
.