某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、
人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求
的值;
(2)把在前排就坐的高二代表队6人分别记为
,现随机从中抽取2人上台抽奖,求
和
至少有一人上台抽奖的概率;
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个
之间的均匀随机数
,并按如右所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
已知曲线
:
.
(Ⅰ)当
时,求曲线
的斜率为1的切线方程;
(Ⅱ)设斜率为
的两条直线与曲线
相切于
两点,求证:
中点
在曲线
上;
(Ⅲ)在(Ⅱ)的条件下,又已知直线
的方程为:
,求
的值.
已知圆锥曲线
的两个焦点坐标是
,且离心率为
;
(Ⅰ)求曲线
的方程;
(Ⅱ)设曲线
表示曲线
的
轴左边部分,若直线
与曲线
相交于
两点,求
的取值范围;
(Ⅲ)在条件(Ⅱ)下,如果
,且曲线
上存在点
,使
,求
的值.
某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利
元的前提下,可卖出
件;若做广告宣传,广告费为
千元比广告费为
千元时多卖出
件.
(Ⅰ)试写出销售量
与
的函数关系式;
(Ⅱ)当
时,厂家应生产多少件这种产品,做几千元的广告,才能获利最大?
如图,四棱锥
的底面
为矩形,且
,
,
,
,
(Ⅰ)平面PAD与平面PAB是否垂直?并说明理由;
(Ⅱ)求直线PC与平面ABCD所成角的正弦值.
2013年4月14日,CCTV财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如下表:
| 混凝土耐久性达标 |
混凝土耐久性不达标 |
总计 |
|
| 使用淡化海砂 |
25 |
![]() |
30 |
| 使用未经淡化海砂 |
![]() |
15 |
30 |
| 总计 |
40 |
20 |
60 |
(Ⅰ)根据表中数据,求出
,
的值,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关?
(Ⅱ)若用分层抽样的方法在使用淡化海砂的样本中抽取了6个,现从这6个样本中任取2个,则取出的2个样本混凝土耐久性都达标的概率是多少?
参考数据:
![]() |
0.10 |
0.050 |
0.025 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
参考公式: 