某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益函数是其中
是仪器的产量(单位:台):
(1)将利润表示为产量
的函数(利润
总收益
总成本);
(2)当产量为多少台时,公司所获利润最大?最大利润是多少元?
从某校高二年级名男生中随机抽取
名学生测量其身高,据测量被测学生的身高全部在
到
之间.将测量结果按如下方式分成
组:第一组
,第二组
, ,第八组
,如下右图是按上述分组得到的频率分布直方图的一部分.已知第一组与第八组的人数相同,第六组、第七组和第八组的人数依次成等差数列.
频率分布表如下:
分组 |
频数 |
频率 |
频率/组距 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
频率分布直方图如下:
(1)求频率分布表中所标字母的值,并补充完成频率分布直方图;
(2)若从身高属于第六组和第八组的所有男生中随机抽取名男生,记他们的身高分别为
,求满足:
的事件的概率.
在平面直角坐标系中,动点
满足:点
到定点
与到
轴的距离之差为
.记动点
的轨迹为曲线
.
(1)求曲线的轨迹方程;
(2)过点的直线交曲线
于
、
两点,过点
和原点
的直线交直线
于点
,求证:直线
平行于
轴.
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
5 |
||
女生 |
10 |
||
合计 |
50 |
已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.
(1)请将上表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理
由;下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
已知△的两个顶点
的坐标分别是
,
,且
所在直线的斜率之积等于
.
(1)求顶点的轨迹
的方程,并判断轨迹
为何种圆锥曲线;
(2)当时,过点
的直线
交曲线
于
两点,设点
关于
轴的对称点为
(
不重合), 试问:直线
与
轴的交点是否是定点?若是,求出定点,若不是,请说明理由.