已知函数,
,设
.
(1)若在
处取得极值,且
,求函数
的单调区间;
(2)若时,函数
有两个不同的零点
.求证:
.
在极坐标系中,曲线的极坐标方程为
,现以极点
为原点,极轴为
轴的非负半轴建立平面直角坐标系,直线
的参数方程为
(
为参数)
(1)写出直线l和曲线C的普通方程;
(2)设直线l和曲线C交于A,B两点,定点P(—2,—3),求|PA|·|PB|的值.
如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC
(1)求证:BE=2AD;
(2)当AC=3,EC=6时,求AD的长.
设函数.
(1)求的单调区间和极值;
(2)若,当
时,
在区间
内存在极值,求整数
的值.
已知圆的圆心在坐标原点
,且恰好与直线
相切,设点A为圆上一动点,
轴于点
,且动点
满足
,设动点
的轨迹为曲线
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
如图,三棱柱的侧棱
平面
,
为等边三角形,侧面
是正方形,
是
的中点,
是棱
上的点.
(1)若是棱
中点时,求证:
平面
;
(2)当时,求正方形
的边长.