已知函数,其中a∈R,且曲线
在点
处的切线垂直于直线
.
(1)求a的值;
(2)求函数的单调区间.
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.
(1)求证:平面ABM平面PCD;
(2)求三棱锥M-ABD的体积.
某学校准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位cm),跳高成绩在175cm以上(包括175cm)定义为“合格”,成绩在175以下(不包括175cm)定义为“不合格”
(1)求甲队队员跳高成绩的中位数
(2)如果用分层抽样的方法从甲、乙两队所有的运动员中共抽取5人,则5人中“合格”与“不合格”的人数各为多少?
(3)从甲队178cm以上(包括178cm)选取2人,至少有一人在186cm以上(包括186cm)的概率为多少?
如图1,在直角梯形中,
,
,且
.现以
为一边向形外作正方形
,然后沿边
将正方形
翻折,使平面
与平面
垂直,
为
的中点,如图2.
(1)求证:∥平面
;
(2)求证:平面
;
(3)求点到平面
的距离.
已知圆的极坐标方程为:.
(1)将极坐标方程化为普通方程;
(2)若点在该圆上,求
的最大值和最小值.
已知函数
(1)试判断函数的单调性;
(2)设,求
在
上的最大值;
(3)试证明:对,不等式
.