已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切,过点
且不垂直于x轴直线
与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
(理科)已知椭圆的左右焦点分别为
,点
为短轴的一个端点,
.(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,过右焦点,且斜率为
的直线
与椭圆
相交于
两点,
为椭圆的右顶点,直线
分别交直线
于点
,线段
的中点为
,记直线
的斜率为
.求证:
为定值.
(文科)已知点Q为直线x=﹣4上的动点,过点Q作直线l垂直于y轴,动点P在l上,且满足OP⊥OQ(O为坐标原点),记动点P的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A,B为曲线C上两点,且直线AB与x轴不垂直,若线段AB中点的横坐标为2,求证:线段AB的垂直平分线过定点.
(理科)已知椭圆经过点
,离心率为
.(Ⅰ)求椭圆
的方程;
(Ⅱ)直线与椭圆
交于
两点,点
是椭圆
的右顶点.直线
与直线
分别与
轴交于点
,试问以线段
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.
(文科)已知椭圆的右焦点为
,短轴的端点分别为
,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为
的直线
交椭圆于
两点,弦
的垂直平分线与
轴相交于点
.设弦
的中点为
,试求
的取值范围.
(理科)已知双曲线的离心率为
,右准线方程为
(Ⅰ)求双曲线的方程;
(Ⅱ)设直线是圆
上动点
处的切线,
与双曲线
交于不同的两点
,证明
的大小为定值.