某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个) |
2 |
3 |
4 |
5 |
加工的时间y(小时) |
2.5 |
3 |
4 |
4.5 |
(1)求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少时间?
已知实数x、y满足
(1)求不等式组表示的平面区域的面积;
(2)若目标函数为z=x-2y,求z的最小值.
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.
甲 |
27 |
38![]() |
30 |
37 |
35 |
31 |
乙 |
33 |
29 |
38 |
34 |
28 |
36 |
(1)画出茎叶图,由茎叶图判断哪位选手的成绩较稳定?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.
设是定义在R上的两个函数,
是R上任意两个不等的实根,设
恒成立,且
为奇函数,判断函数
的奇偶性并说明理由。
(本小题满分14分)函数
(1)若,求
的值域
(2)若在区间
上有最大值14。求
的值;
(3)在(2)的前题下,若,作出
的草图,并通过图象求出函数
的单调区间