某商店试销某种商品,获得如下数据:
日销售量(件) |
0 |
1 |
2 |
3 |
概率 |
0.05 |
0.25 |
0.45 |
0.25 |
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货再补充3件,否则不进货。
(Ⅰ)求当天商品不进货的概率;
(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。
如图所示,过双曲线x2-=1的右焦点作直线与双曲线交于A、B两点,若OA⊥OB(O为坐标原点),求AB所在直线的方程.
经过双曲线x2-=1的左焦点F1作倾斜角为
的弦AB,求:
(1)|AB|;
(2)△F2AB的周长(F2为右焦点).
已知抛物线y2=x上存在两点关于直线l:y=k(x-1)+1对称,求实数k的取值范围.
给定直线l:y=2x-16,抛物线C:y2=ax(a>0).
(1)当抛物线C的焦点在直线l上时,确定抛物线C的方程;
(2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标ya=8,△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.
顶点在原点,焦点在x轴上,且截直线2x-y+1=0所得弦长为,求抛物线方程.