已知F1、F2分别是椭圆
的左、右焦点.
(Ⅰ)若P是第一象限内该图形上的一点,
,求点P的坐标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线
的斜率
的取值范围.
如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求
的长;
(2)求cos<
>的值;
(3)求证:A1B⊥C1M.
四棱锥P—ABCD中,底面ABCD是一个平行四边形,
={2,-1,-4},
={4,2,0},
={-1,2,-1}.
(1)求证:PA⊥底面ABCD;
(2)求四棱锥P—ABCD的体积;
(3)对于向量
={x1,y1,z1},
={x2,y2,z2},
={x3,y3,z3},定义一种运算:
(
×
)·
=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1,试计算(
×
)·
的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算(
×
)·
的绝对值的几何意义..
若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.
如图在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(
,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.
(1)求向量
的坐标;
(2)设向量
和
的夹角为θ,求cosθ的值
如图,已知正方体
的棱长为a,M为
的中点,点N在
'上,且
,试求MN的长.