某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
X |
1 |
2 |
3 |
4 |
5 |
频率 |
a |
0.2 |
0.45 |
b |
c |
(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;
(2)在(1)的条件下,将等级系数为4的3件日用品记为,等级系数为5的2件日用品记为
,现从
,
这5件日用品中任取两件(假定每件日用品被取出的可能性相同),求这两件日用品的等级系数恰好相等的概率.
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
我们把一系列向量按次序排成一列,称之为向量列,记作
,已知向量列
满足:
,
.
(1)证明:数列是等比数列;
(2)设,问数列
中是否存在最小项?若存在,求出最小项;若不存在,请说明理由;
(3)设表示向量
与
间的夹角,若
,对于任意正整数
,不等式
恒成立,求实数
的范围.
(本题满分18分,第(1)小题4分,第(2)小题5分,第(3)小题9分)
设函数的定义域为
,值域为
,如果存在函数
,使得函数
的值域仍是
,那么称
是函数
的一个等值域变换.
(1)判断下列函数是不是函数
的一个等值域变换?说明你的理由;
,
;
,
.
(2)设函数的定义域为
,值域为
,函数
的定义域为
,值域为
,那么“
”是否为“
是
的一个等值域变换”的一个必要条件?请说明理由;
(3)设的定义域为
,已知
是
的一个等值域变换,且函数
的定义域为
,求实数
的值.
(本题满分14分,第(1)小题5分,第(2)小题9分)
已知圆,点
,点
在圆
上运动,
的垂直平分线交
于点
.
(1)求动点的轨迹
方程;
(2)过点且斜率为
的动直线
交曲线
于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,请求出点
的坐标;若不存在,请说明理由.
(本题满分13分,第(1)小题5分,第(2)小题8分)
如图所示,某市拟在长为道路
的一侧修建一条运动赛道,赛道的前一部分为曲线段
,该曲线段为函数
的图像,且图像的最高点为
,赛道的后一部分为折线段
,且
.
(1)求、
两点间的直线距离;
(2)求折线段赛道长度的最大值.
(本题满分12分,第(1)小题5分,第(2)小题7分)
如图,是圆柱体
的一条母线,已知
过底面圆的圆心
,
是圆
上不与点
重合的任意一点,
,
,
.
(1)求直线与平面
所成角的大小;
(2)将四面体绕母线
旋转一周,求
的三边在旋转过程中所围成的几何体的体积.