如图,已知是椭圆
的右焦点,圆
与
轴交于
两点,其中
是椭圆
的左焦点.
(1)求椭圆的离心率;
(2)设圆与
轴的正半轴的交点为
,点
是点
关于
轴的对称点,试判断直线
与圆
的位置关系;
(3)设直线与圆
交于另一点
,若
的面积为
,求椭圆
的标准方程.
[选修4-4:坐标系与参数方程]
在直角坐标系 中,曲线 的参数方程为 ,以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 .
(1)写出 的普通方程和 的直角坐标方程;
(2)设点P在 上,点Q在 上,求 的最小值及此时P的直角坐标.
[选修4-1:几何证明选讲]如图,⊙O中 的中点为P,弦PC,PD分别交AB于E,F两点.
(1)若 ,求 的大小;
(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明: .
设函数 .
(1)讨论 的单调性;
(2)证明当x∈(1,+∞)时,1< <x;
(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>cx .
已知抛物线 的焦点为F,平行于x轴的两条直线 , 分别交C于A,B两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明 ;
(2)若 的面积是 的面积的两倍,求AB中点的轨迹方程.
如图,四棱锥 中, , , , ,M为线段AD上一点, ,N为PC的中点.
(1)证明 ;
(2)求四面体 的体积.