在△中,内角
、
、
的对边分别是
、
、
,且
.
(Ⅰ)求;
(Ⅱ)设,
,求
的值.
通过市场调查,得到某产品的资金投入(万元)与获得的利润
(万元)的数据,如下表所示:
(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;
(2)现投入资金(万元),求估计获得的利润为多少万元.
资金入![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
利润![]() |
![]() |
3 |
![]() |
![]() |
![]() |
一个口袋中装有大小相同的个红球(
且
)和
个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖。
(Ⅰ)试用表示一次摸奖中奖的概率
;
(Ⅱ)记从口袋中三次摸奖(每次摸奖后放回)恰有一次中奖的概率为,求
的最大值.
(Ⅲ)在(Ⅱ)的条件下,将个白球全部取出后,对剩下的
个红球全部作如下标记:记上
号的有
个(
),其余的红球记上
号,现从袋中任取一球。
表示所取球的标号,求
的分布列、期望和方差.
已知的展开式中前三项的系数成等差数列.
(Ⅰ)求n的值;
(Ⅱ)求展开式中系数最大的项.
某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
积极参加班级工作 |
不太主动参加班级工作 |
合计 |
|
学习积极性高 |
18 |
7 |
25 |
学习积极性一般 |
6 |
19 |
25 |
合计 |
24 |
26 |
50 |
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?说明理由.
![]() |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
袋子和
中装有若干个均匀的红球和白球,从
中摸一个红球的概率是
,从
中摸出一个红球的概率为
.
⑴从A中有放回地摸球,每次摸出一个,有3次摸到红球则停止.
①求恰好摸5次停止的概率;
② 记5次之内(含5次)摸到红球的次数为,求随机变量
的分布列及数学期望
.
⑵若A、B两个袋子中的球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率是,求
的值.