游客
题文

在四棱锥中,底面为矩形,侧棱底面,且,过棱的中点,作于点,连接

(Ⅰ)证明:
(Ⅱ)求异面直线所成角的余弦值及二面角的余弦值.

科目 数学   题型 解答题   难度 较易
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

已知函数的定义域为,若上为增函数,则称
为“比增函数”;
(Ⅰ)若函数是“比增函数”,求实数的取值范围;
(Ⅱ)已知,为“比增函数”,且的部分函数值由下表给出,












求证:

)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.

(Ⅰ)求证:平面DAF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为,求

中,角的对边分别为,且
(Ⅰ)求
(Ⅱ)若,求△面积最大值.

设数列的前n项和为,满足,且
(Ⅰ)求证是等比数列;
(Ⅱ)若存在使得成等差数列,求

在平面直角坐标系中,已知是圆的一条直径,是动点,且直线的斜率之积等于
(1)求动点的轨迹方程;
(2)设直线分别与直线交于点,问:是否存在点使得的面积相等?若存在,求出点的坐标;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号