某运输公司有12名驾驶员和19名工人,有8辆载重量为10t的甲型卡车和7辆载重量为6t的乙型卡车,某天需送往A地至少72t的货物,派用的每辆车需载满且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人;运送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,求公司最大利润.
已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≥3的解集为{x|x≤1或x≥5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+4)≥m对一切实数x恒成立,求实数m的取值范围.
已知定义在正实数集上的函数,
(其中
为常数,
),若这两个函数的图象有公共点,且在该点处的切线相同。
(Ⅰ)求实数的值;
(Ⅱ)当时,
恒成立,求实数
的取值范围.
某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.
⑴求全班人数及分数在之间的频数;
⑵估计该班的平均分数,并计算频率分布直方图中间的矩形的高;
⑶若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在
之间的概率.
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,是
的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积。
(Ⅱ)若是
的中点,求证:
平面
;
(Ⅲ)求证:平面平面
.
已知在中,
,且
与
是方程
的两个根.
(Ⅰ)求的值;
(Ⅱ)若,求
的长.