已知f(x)=,
.
(1)若b≥1,求证:函数f(x)在(0,1)上是减函数;
(2)是否存在实数a,b,使f(x)同时满足下列两个条件:
①在(0,1)上是减函数,(1,+∞)上是增函数;
②f(x)的最小值是3.若存在,求出a,b的值;若不存在,请说明理由.
已知数列中,
(1)求,
;
(2)求证:是等比数列,并求
的通项公式
;
(3)数列满足
,数列
的前n项和为
,若不等式
对一切
恒成立,求
的取值范围.
如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.
(1)求渔船甲的速度;
(2)求sinα的值.
已知数列的前
项和为
,且2
.
(1)求数列的通项公式;
(2)若求数列
的前
项和
.
在△ABC中,a,b,c分别为角A,B,C的对边,
(1)求角A的度数;
(2)若a=,b+c=3,求△ABC的面积.
在△中,角
所对的边分别为
,已知
,
,
.
(1)求的值;
(2)求的值.