游客
题文

如图,四棱锥,平面⊥平面,△是边长为2的等边三角形,底面是矩形,且

(1)若点的中点,求证:平面
(2)试问点在线段上什么位置时,二面角的大小为

科目 数学   题型 解答题   难度 中等
知识点: 平行线法
登录免费查看答案和解析
相关试题

为了研究一种新药的疗效,选100名患者随机分成两组,每组各 50 名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标 x y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.

image.png

(1)从服药的50名患者中随机选出一人,求此人指标 y 的值小于 60 的概率;

(2)从图中A,B,C,D四人中随机选出两人,记 ξ 为选出的两人中指标x的值大于1.7的人数,求 ξ 的分布列和数学期望 E ξ

(3)试判断这100名患者中服药者指标 y 数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)

如图,在四棱锥 P ABCD 中,底面 ABCD 为正方形,平面 PAD 平面 ABCD ,点M在线段PB上, PD 平面 MAC PA = PD = 6 AB = 4

image.png

(1)求证:M为PB的中点;

(2)求二面角 B PD A 的大小;

(3)求直线MC与平面BDP所成角的正弦值.

ABC 中, A = 60 ° c = 3 7 a

(1)求 sinC 的值;

(2)若 a = 7 ,求 ABC 的面积.

给定无穷数列 { a n } ,若无穷数列{b n}满足:对任意 n N * ,都有 | b n - a n | 1 ,则称 { b n } { a n } "接近"。

(1)设 { a n } 是首项为1,公比为 1 2 的等比数列, b n = a n + 1 + 1 n N * ,判断数列 { b n } 是否与 { a n } 接近,并说明理由;

(2)设数列 { a n } 的前四项为: a 1 =1, a 2 =2, a 3 =4, a 4 =8, b n 是一个与 { a n } 接近的数列,记集合M={x|x=b i, i=1,2,3,4},求M中元素的个数m;

(3)已知 { a n } 是公差为d的等差数列,若存在数列{b n}满足:{b n}与 { a n } 接近,且在b₂-b₁,b₃-b₂,…b 201-b 200中至少有100个为正数,求d的取值范围。

设常数 t > 2 ,在平面直角坐标系xOy中,已知点F(2,0),直线 l x = t ,曲线 Γ y ² = 8 x 0 x t y 0 l 与x轴交于点A,与 Γ 交于点B,P、Q分别是曲线 Γ 与线段AB上的动点。

(1)用t表示点B到点F的距离;

(2)设t=3, FQ = 2 ,线段OQ的中点在直线FP上,求△AQP的面积;

(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在 Γ 上?若存在,求点P的坐标;若不存在,说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号