某班共有36名学生,其中有班干部6名,现从36名同学中任选2名代表参加某次活动,求:
(1)恰有1名班干部当选代表的概率;
(2)至少有1名班干部当选代表的概率;
(3)已知36名学生中男生比女生多,若选得同性代表的概率等于,则男生比女生多几人?
设是方程
的一个根.
(1)求;
(2)设(其中
为虚数单位,
),若
的共轭复数
满足
,求
.
在直角坐标系中,设动点
到定点
的距离与到定直线
的距离相等,记
的轨迹为
.又直线
的一个方向向量
且过点
,
与
交于
两点,求
的长.
已知函数
,无穷数列
满足
,
.
(1)若
,求
;
(2)若
,且
成等比数列,求
的值
(3)是否存在
,使得
成等差数列?若存在,求出所有这样的
,若不存在,说明理由.
已知函数
,其中常数
(1)令
,判断函数
的奇偶性,并说明理由;
(2)令
,将函数
的图象向左平移个
单位,再向上平移1个单位,得到函数
的图象,对任意
,求
在区间
上零点个数的所有可能值.
甲厂以
千克/小时的速度匀速生产某种产品(生产条件要求
),每一小时可获得的利润是
元.
(1)求证:生产
千克该产品所获得的利润为
元;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.