游客
题文

某班共有36名学生,其中有班干部6名,现从36名同学中任选2名代表参加某次活动,求:
(1)恰有1名班干部当选代表的概率;
(2)至少有1名班干部当选代表的概率;       
(3)已知36名学生中男生比女生多,若选得同性代表的概率等于,则男生比女生多几人?

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

是方程的一个根.
(1)求
(2)设(其中为虚数单位,),若的共轭复数满足,求

在直角坐标系中,设动点到定点的距离与到定直线的距离相等,记的轨迹为.又直线的一个方向向量且过点交于两点,求的长.

已知函数 f x = 2 - x ,无穷数列 a n 满足 a n + 1 = f a n , n N * .
(1)若 a 1 = 0 ,求 a 2 , a 3 , a 4
(2)若 a 1 > 0 ,且 a 1 , a 2 , a 3 成等比数列,求 a 1 的值
(3)是否存在 a 1 ,使得 a 1 , a 2 , , a n , 成等差数列?若存在,求出所有这样的 a 1 ,若不存在,说明理由.

已知函数 f ( x ) = 2 sin ( ω x ,其中常数 ω > 0
(1)令 ω = 1 ,判断函数 F ( x ) = f ( x ) + f ( x + π 2 ) 的奇偶性,并说明理由;
(2)令 ω = 2 ,将函数 y = F ( x ) 的图象向左平移个 π 6 单位,再向上平移1个单位,得到函数 y = g ( x ) 的图象,对任意 a R ,求 y = g ( x ) 在区间 [ a , a + 10 π ] 上零点个数的所有可能值.

甲厂以 x 千克/小时的速度匀速生产某种产品(生产条件要求 1 x 10 ),每一小时可获得的利润是 100 ( 5 x + 1 - 3 x ) 元.
(1)求证:生产 a 千克该产品所获得的利润为 100 a 5 + 1 x - 3 x 2 元;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号