已知函数是定义在
上的偶函数,当
时,
.
(1)求的函数解析式,并用分段函数的形式给出;
(2)作出函数的简图;
(3)写出函数的单调区间及最值.
已知函数.
(1)当时,求曲线
在点
的切线方程;
(2)对一切,
恒成立,求实数
的取值范围;
(3)当时,试讨论
在
内的极值点的个数.
已知椭圆与
的离心率相等. 直线
与曲线
交于
两点(
在
的左侧),与曲线
交于
两点(
在
的左侧),
为坐标原点,
.
(1)当=
,
时,求椭圆
的方程;
(2)若,且
和
相似,求
的值.
已知是等差数列,公差为
,首项
,前
项和为
.令
,
的前
项和
.数列
满足
,
.
(1)求数列的通项公式;
(2)若,
,求
的取值范围.
如图几何体中,四边形为矩形,
,
,
,
,
为
的中点,
为线段
上的一点,且
.
(1)证明:面
;
(2)证明:面面
;
(3)求三棱锥的体积
.
某公司销售、
、
三款手机,每款手机都有经济型和豪华型两种型号,据统计
月份共销售
部手机(具体销售情况见下表)
![]() |
![]() |
![]() |
|
经济型 |
![]() |
![]() |
![]() |
豪华型 |
![]() |
![]() |
![]() |
已知在销售部手机中,经济型
款手机销售的频率是
.
(1)现用分层抽样的方法在、
、
三款手机中抽取
部,求在
款手机中抽取多少部?
(2)若,求
款手机中经济型比豪华型多的概率.