设函数.
(1)求函数的单调区间;
(2)若,求证:
.
(本小题满分12分)设函数(其中
为自然对数的底数,
),曲线
在点
处的切线方程为
.
(1)求;
(2)若对任意,
有且只有两个零点,求
的取值范围.
(本小题满分12分)已知椭圆的中心在坐标原点,右焦点为
,
、
是椭圆
的左、右顶点,
是椭圆
上异于
、
的动点,且
面积的最大值为12.
(1)求椭圆的方程;
(2)求证:当点在椭圆
上运动时,直线
与圆
恒有两个交点,并求直线
被圆
所截得的弦长
的取值范围.
(本小题满分12分)如图,直三棱柱中,
,
,
、
分别为
和
上的点,且
.
(1)求证:当时,
;
(2)当为何值时,三棱锥
的体积最小,并求出最小体积.
(本小题满分12分)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段 |
[40,50) |
[50,60) |
[60,70) |
[70,80) |
[80,90) |
[90,100] |
男 |
3 |
9 |
18 |
15 |
6 |
9 |
女 |
6 |
4 |
5 |
10 |
13 |
2 |
估计男、女生各自的成绩平均分(同一组数据用该组区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关;
优分 |
非优分 |
合计 |
|
男生 |
|||
女生 |
|||
合计 |
100 |
(2)规定80分以上为优分(含80分),请你根据已知条件作出列联表,并判断是否有
以上的把握认为“数学成绩与性别有关”.
附表及公式
![]() |
0.100 |
0.050 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
6.635 |
10.828 |
.
(本小题满分12分)已知等差数列中,
,其前
项和
满足
(
).
(1)求数列的通项公式;
(2)令,求数列
的前
项和
.