如图,三棱锥中,
平面
,
,点
,
分别为
,
的中点.
(1)求证:平面
;
(2)在线段
上的点,且
平面
.
①确定点的位置;
②求直线与平面
所成角的正切值.
(本小题满分12分)在四棱锥P-ABCD中,底面ABCD是矩形,平面PAD平面ABCD,
,
.
(Ⅰ)求证:平面PCD平面PAB;
(Ⅱ)设E是棱AB的中点,,
,求二面角
的余弦值.
(本小题满分12分)由于雾霾日趋严重,政府号召市民乘公交出行,但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如下表所示:
(Ⅰ)估计这60名乘客中候车时间少于10分钟的人数;
(Ⅱ)现从这10人中随机取3人,求至少有一人来自第二组的概率;
(Ⅲ)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.
(本小题满分12分)在中,角A,B,C的对边分别为a,b,c,且
.
(1)求角A的大小;
(2)若,求b,c的值.
设是公差不为0的等差数列,满足
,则该数列的前10项和等于()
A.-10 | B.-5 | C.0 | D.5 |
(本小题满分12分)已知函数,其中
为常数,且
(1)当时,求
的单调区间;
(2)若在
处取得极值,且在
的最大值为1,求
的值.