游客
题文

设椭圆的左、右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且,求直线MN的方程.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

设函数
(Ⅰ)求函数的最小正周期和单调递增区间;
(Ⅱ)△ABC,角A,B,C所对边分别为a,b,c,且求a的值.

已知数列中,.
(1)求
(2)求的通项公式;
(3)证明:

一动圆与圆外切,同时与圆内切.
(1)求动圆圆心的轨迹的方程;
(2)在矩形中(如图),
分别是矩形四边的中点,分别是(其中是坐标系原点)的中点,直线的交点为,证明点在轨迹上.

一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒.
(1)将方盒的容积表示成的函数
(2)当是多少时,方盒的容积最大?最大容积是多少?

如图:在棱长为1的正方体中.
点M是棱的中点,点的中点.
(1)求证:垂直于平面
(2)求平面与平面所成二面角的平面角(锐角)
的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号