在中,角
所对的边分别为
,且满足
,
.
(1)求的面积;
(2)若,求
的值.
(理科)已知双曲线的左、右焦点分别为
,
,过点
的动直线与双曲线相交于
两点.
(Ⅰ)若动点满足
(其中
为坐标原点),求点
的轨迹方程;
(Ⅱ)在轴上是否存在定点
,使
·
为常数?若存在,求出点
的坐标;若不存在,请说明理由.
(理科)已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是
(1)求椭圆E的方程;
(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。
(理科)椭圆C:(a>b>0)的左、右焦点分别是F1、F2,离心率为
,过F1且垂直于x轴的直线被椭圆C截得的线段长为l.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.
(文科)已知点为双曲线
(
为正常数)上任一点,
为双曲线的右焦点,过
作右准线的垂线,垂足为
,连接
并延长交
轴于
.
(1)线段的中点
的轨迹
的方程;
(2)设轨迹与
轴交于
两点,在
上任取一点
,直线
分别交
轴于
两点.求证:以
为直径的圆过两定点.
(理科)已知是抛物线
上一点,经过点
的直线
与抛物线
交于
两点(不同于点
),直线
分别交直线
于点
.
(Ⅰ)求抛物线方程及其焦点坐标;
(Ⅱ)已知为原点,求证:
为定值.