如图,中,
是
的中点,
,
.将
沿
折起,使
点与图中
点重合.
(1)求证:平面
;
(2)当三棱锥的体积取最大时,求二面角
的余弦值;
(3)在(2)条件下,试问在线段上是否存在一点
,使
与平面
所成角的正弦值为
?证明你的结论.
直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程
一直线被两直线l1:4x+y+6=0,l2:3x-5y-6=0截得的线段的中点恰好是坐标原点,求该直线方程.
求下列各圆的标准方程:
(1)圆心在上且过两点(2,0),(0,-4);
(2)圆心在直线上,且与坐标轴相切
已知△ABC的三顶点是A(-1,-1),B(3,1),C(1,6).直线l平行于AB,交AC,BC分别于E,F,△CEF的面积是△CAB面积的.求直线l的方程.
设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:
①l在x轴上的截距是-3;
②斜率为1.