游客
题文

如图,平面直角坐标系中,为坐标原点,抛物线交x轴于A、B两点(点A在点B的左侧),交y轴于点C,以OB、OC为边作矩形OBDC,CD交抛物线于G.

(1)求OB和OC的长;
(2)抛物线的对称轴在边OB(不包括O、B两点)上作平行移动,交x轴于点E,交CD于点F,交BC于点M,交抛物线于点P.设OE=m,PM=h,求h与m的函数关系式,并求PM的最大值;
(3)连接PC,在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形与△BEM相似?若存在,求出相应的m的值,并判断△PCM的形状;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

化简比
0.75:米:60厘米=

一个数除以,相当于把这个数扩大10倍.()

一根电线长3米,用去米后,还剩下米.()

1吨的和4吨的一样重. ()

(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.
(2) 如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号