如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.
(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
某文具店王经理统计了2009年1月至4月A、B、C这三种型号的钢笔平均每月的销售量,并绘制图1(不完整),销售这三种型号钢笔平均每月获得的总利润为600元,每种型号钢笔获得的利润分布情况如图2.已知C型号钢笔每支的利润是1.2元,请你结合图中的信息,解答下列问题:
(1)销售B型号钢笔平均每月获得的利润占总利润的▲%,A型号钢笔每支的利润是▲,B型号钢笔每支的利润是▲,C
种型号钢笔平均每月的销售量是▲支,并将图1补充完整;
(2)王经理计划5月份购进A、B、C这三种型号钢笔共900支,请你结合1月至4月平均每月的销售情况(不考虑其它因素),设计一个方案,使获得的利润最大,并说明理由.
如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE 交BC于E, EC=AB, F、G分别是AB、AD的中点.
求证:(1)△AGE≌AFE;
(2)EF=CD.
解方程或不等式组(每小题4分,共8分)(1)
(2)
如图,为直角三角形,
,
,
;四边形
为矩形,
,
,且点
、
、
、
在同一条直线上,点
与点
重合.
(1)求边
的长;
(2)将
以每秒
的速度沿矩形
的边
向右平移,当点
与点
重合时停止移动,设
与矩形
重叠部分的面积为
,请求出重叠部分的面积
(
)与移动时间
的函数关系式(时间不包含起始与终止时刻);
(3)在(2)的基础上,当
移动至重叠部分的面积为
时,将
沿边
向上翻折,得到
,请求出
与矩形
重叠部分的周长(可利用备用图).
有一座抛物线型拱桥,其水面宽为18米,拱顶
离水面
的距离
为8米,货船在水面上的部分的横断面是矩形
,如图建立平面直角坐标系.
(1)求此抛物线的解析式,并写出自变量的取值范围;
(2)如果限定
的长为9米,
的长不能超过多少米,才能使船通过拱桥?
(3)若设
,请将矩形
的面积
用含
的代数式表示,并指出
的取值范围.