某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核.
(1)求从甲、乙两组各抽取的人数;
(2)求从甲组抽取的工人中恰有1名女工人的概率;
(3)求抽取的4名工人中恰有2名男工人的概率.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为4元/千克时,每日可销售出该商品5千克;销售价格为4.5元/千克时,每日可销售出该商品2.35千克.
(1)求的解析式;
(2)若该商品的成本为2元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润
最大.
某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
(1)上表是年龄的频率分布表,求正整数的值;
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人年龄在第3组的概率.
已知函数d的最大值为2,
是集合
中的任意两个元素,且
的最小值为
.
(1)求函数的解析式及其对称轴;
(2)若,求
的值.
已知函数
(1)解不等式;
(2)对于任意的,不等式
恒成立,求
的取值范围.
已知函数,
,
.
(1)求的最大值;
(2)若对,总存在
使得
成立,求
的取值范围;
(3)证明不等式:.