如图,在三棱柱中,四边形
是边长为4的正方形,平面
平面
,
,
.
(Ⅰ)求证:平面
;
(Ⅱ)若点是线段
的中点,请问在线段
是否存在点
,使得
面
?若存在,请说明点
的位置,若不存在,请说明理由;
(Ⅲ)求二面角的大小.
已知椭圆:
,
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线
与椭圆
交于不同的两点
,且
为锐角(
为坐标原点),求直线
的斜率
的取值范围;
(3)过原点任意作两条互相垂直的直线与椭圆
:
相交于
四点,设原点
到四边形
的一边距离为
,试求
时
满足的条件.
(原创)已知集合M是满足下列性质的函数的全体:存在非零常数T,对任意
∈R,有
成立.
(1)函数是否属于集合M?说明理由;
(2)若定义在R上的偶函数满足
,求证:
;
(3)设函数且
)的图象与
的图象有公共点,证明:
∈M;
在长方体中,
,过
,
,
三点的平面截去长方体的一个角后,得到如图所示的几何体
,这个几何体的体积为
.
(1)证明:直线∥平面
;
(2)求棱的长;
(3)在线段上是否存在点
,使直线
与
垂直,如果存在,求线段
的长,如果不存在,请说明理由.
已知数列的各项均为正数,其前
项和为
,且满足
,
N
.
(1)求的值;
(2)求数列的通项公式;
(3)是否存在正整数, 使
,
,
成等比数列? 若存在, 求
的值; 若不存在, 请说明理由.
在中,
,
.
(Ⅰ)求的值;
(Ⅱ)求的值.