已知椭圆:
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆的方程;
(2)设,过点
作与
轴不重合的直线
交椭圆
于
,
两点,连接
,
分别交直线
于
,
两点,若直线
、
的斜率分别为
、
,试问:
是否为定值?若是,求出该定值,若不是,请说明理由.
已知
(1)求的值域;
(2)若,求
的值。
(本小题满分14分)已知的图像在点
处的切线与直线
平行.
(1)求a,b满足的关系式;
(2)若上恒成立,求a的取值范围;
(3)证明:
(本小题满分12分)已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;
是过点P(0,2)且互相垂直的两条直线,
交E于A,B两点,
交E交C,D两点,AB,CD的中点分别为M,N。
(1)求椭圆E的方程;
(2)求k的取值范围;
(3)求的取值范围。
(本小题满分12分)
在数列。
(1)求证:数列是等差数列,并求数列
的通项公式
;
(2)设,求数列
的前
项和。
在如图所示的空间几何体中,平面平面ABC,
AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上。
(1)求证:DE//平面ABC;
(2)求二面角E—BC—A的余弦值;