本小题满分16分)
如图,已知圆是椭圆
的内接△
的内切圆, 其中
为椭圆的左顶点.
(1)求圆的半径
;
(2)过点
作圆
的两条切线交椭圆于
两点,
|
判断直线与圆
的位置关系并说明理由.
(本小题满分15分)
两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市
的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在
的中点时,对城A和城B
的总影响度为0.065.
(1)将y表示成x的函数;
(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。
(本小题满分15分)
已知,函数
.
(Ⅰ)若在
处取得极值,求函数
的单调区间;
(Ⅱ)求函数在区间
上的最大值
.(注:
)
(本小题满分14分)
如图所示,在边长为12的正方形中,点
在线
段
上,且
,
,作
//
,分别交
,
于点
,
,作
//
,分别交
,
于点
,
,将该正方形沿
,
折叠,使得
与
重合,构成如图2所示的三棱柱
.
(Ⅰ)求证:平面
;
(Ⅱ)求四棱锥的体积;
(本小题满分14分)
已知以角为钝角的
的内角A、B、C的对边分别为a、b、c,
,且
(1)求角
的大小;(2)求
的取值范围.