如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图象的顶点分别为M,N , 与轴分别交于点E, F.
(1) 函数的最小值为 ;
当二次函数L1 ,L2的值同时随着
的增大而减小时,
的取值范围是 ;
(2)当时,求
的值,并判断四边形
的形状(直接写出,不必证明);
(3)若二次函数L2的图象与轴的右交点为
,当△
为等腰三角形时,求方程
的解.
(本题10分)已知关于的方程
和
有相同的解,求
的值和这个解是什么?
(本题10分)小强在计算一个整式减去时,因为粗心,把减去误作为加上,得结果为
.试问:
(1)这是一个怎样的整式?
(2)原题的正确结果应是多少?
(本题10分)某出租车一天下午以地为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:
)依先后顺序记录如下:
,
,
,
,
,
,
,
,
,
.将最后一名乘客送到目的地,出租车离
地多远?在
地的什么方向?若每千米的价格为
元,司机一个下午的营业额是多少?
(本题8分)已知:a+b=-2,ab=-3,求代数值:2(4a-3b-2ab)-3(2a-b+ab)的值,
解方程:(每小题4分,共8分)
(1);
(2).